Wednesday, December 3, 2025
Cloud Native Now

Cloud Native Now


MENUMENU
  • Home
  • Webinars
    • Upcoming
    • Calendar View
    • On-Demand
  • Podcasts
    • Cloud Native Now Podcast
    • Techstrong.tv Podcast
    • Techstrong.tv - Twitch
  • About
  • Sponsor
MENUMENU
  • News
    • Latest News
    • News Releases
  • Cloud-Native Development
  • Cloud-Native Platforms
  • Cloud-Native Networking
  • Cloud-Native Security
Contributed Content Kubernetes Social - Facebook Social - LinkedIn Social - X Topics 

Cost-Aware Observability on K8s: Balancing Scrape Intervals, Retention and Cardinality

December 3, 2025 Carol Byrne cloud-native observability, Cortex long-term storage, cost-aware Kubernetes observability, efficient metric storage, high cardinality metrics, Kubernetes cost optimization, Kubernetes logging and tracing, Kubernetes metrics management, Kubernetes monitoring optimization, Kubernetes performance monitoring, Kubernetes SRE practices, low-cost monitoring, metric cardinality reduction, metric retention policies, observability best practices, Prometheus cost control, Prometheus relabel configs, Prometheus scrape intervals, scrape interval tuning, Thanos downsampling
by Carol Byrne

Cost-aware observability in Kubernetes is essential for ensuring effective monitoring without incurring high costs or overloading the system with data. This involves carefully balancing three key factors — scraping intervals, metric retention and cardinality management. This blog covers real-world examples and code snippets from these areas and explains how to optimize your Kubernetes observability stack for performance and cost-effectiveness. 

Balancing Scrape Intervals for Cost Efficiency 

Scrape intervals determine how often a monitoring system (such as Prometheus) collects metrics from Kubernetes components or applications. A shorter interval provides greater accuracy but increases data volume, processing costs and storage requirements. 

Techstrong Gang Youtube

Real-World Example 

A production cluster with hundreds of pods collecting metrics every 10 seconds quickly consumes storage and slows down query performance, resulting in expensive storage and sluggish query performance. Adjusting scraping intervals based on the importance of the measurement reduces costs while maintaining the visibility you need. 

Code Snippet (Prometheus scrape_configs Example) 

scrape_configs:
  – job_name: ‘kube-apiserver’
    scrape_interval: 10s  # Important, rapid metrics
    static_configs:
      – targets: [‘apiserver.k8s.local:6443’]

  – job_name: ‘kube-node’
    scrape_interval: 30s  # Stable node-level metrics
    static_configs:
      – targets: [‘node-exporter.k8s.local:9100’]

  – job_name: ‘application-metrics’
    scrape_interval: 60s  # Less critical application metrics
    kubernetes_sd_configs:
      – role: pod
    relabel_configs:
      – source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
        action: keep
        regex: true 

In this setup, kube-apiserver metrics are scraped frequently at 10 seconds for timely insights, while stable node metrics are collected every 30 seconds and application metrics are collected less often, at 60 seconds. This saves considerable storage and computing costs while capturing meaningful data where needed. 

Smart Retention Policies to Manage Storage Costs 

Raw, full-fidelity metrics consume significant storage, especially in large clusters. Implementing tiered retention policies based on metric purpose and analysis needs ensures cost-effective long-term observability. 

Industry Practice 

  • High-Value Metrics (e.g., Cluster Health, Service Latency): Retain full resolution for 30 days. 
  • Medium-Value Metrics (e.g., Pod Resource Usage): Retain full resolution for seven days, then downsample for up to 90 days. 
  • Debug or Ephemeral Metrics: Retain only for 24 hours. 

Example Prometheus Retention Flags 

–storage.tsdb.retention.time=30d   # Full retention for 30 days
–storage.tsdb.retention.size=50GB  # Optional size-based retention cap

For long-term storage with downsampling, the integration of Prometheus with tools such as Thanos or Cortex allows for migrating old metrics to cheaper storage with reduced resolution. 

Controlling Metric Cardinality — The Biggest Cost Driver 

Cardinality refers to the number of unique time series generated by all metric labels combined. High cardinality leads to exponential data growth, higher ingestion rates and greater hardware or cloud costs. 

Real-World Scenario 

An application that labels metrics by pod_id, container_id, user_id and request_id generates millions of unique series per day, inflating costs and reducing query performance. 

Strategies and Code-Snippet Example to Reduce Cardinality in Prometheus 

  • Drop unnecessary labels early with relabel_configs: 

metric_relabel_configs:
  – source_labels: [user_id, request_id]
    action: drop  # Remove high-cardinality user/request labels from metrics 

  • Aggregate metrics to a higher level (e.g., per namespace or deployment): 

relabel_configs:
  – source_labels: [__meta_kubernetes_namespace]
    target_label: ‘namespace’
  – source_labels: [__meta_kubernetes_deployment]
    target_label: ‘deployment’
  – action: labeldrop
    regex: ‘pod_id|container_id’  # Drop pod-specific labels for aggregation 

Reducing cardinality helps manage storage costs and improves query speed without sacrificing critical monitoring insights. 

Combining Observability Layers and Cost Optimization 

In a robust Kubernetes observability strategy: 

  • Metrics provide health and performance signals. 
  • Logs capture detailed context for troubleshooting. 
  • Traces map distributed workflows. 

Cost-aware observability balances how long, how frequently and at what level of detail each layer retains data. For example, metrics can be scraped less regularly, while logs might temporarily retain more granular data during incident investigations.  

To achieve the best observability results, you can use full-stack platforms like Middleware, which help reduce cloud observability costs while providing the best insights for your applications. 

Real-World Example  

A platform engineering company optimizes Kubernetes observability by: 

  • Setting different scrape intervals as per workload criticality. 
  • Implementing retention policies with Thanos to keep detailed metrics for 30 days and aggregated metrics for 90 days. 
  • Dropping high-cardinality labels dynamically through relabeling rules to control ingestion rates. 
  • Correlating logs and traces selectively for anomaly detection while minimizing bulk data storage. 

This approach reduces monitoring costs by over 40% while maintaining actionable visibility for teams. 

Key Takeaways 

  • Adjust scrape intervals as per metric criticality to capture essential data efficiently. 
  • Implement tiered retention policies and use downsampling where appropriate. 
  • Control the number of essential items by prematurely discarding or grouping tags with highly crucial items. 
  • Use multi-layer observability to balance cost and insights across metrics, logs and traces. 
  • Leverage tools such as Prometheus, Thanos and Cortex along with dynamic relabeling for automation and cost control. 

With these practices, Kubernetes teams can responsibly scale observability, ensuring that monitoring costs are predictable and visibility remains usable and reliable. 

This detailed, cost-aware observability guide leverages industry best practices and proven real-world approaches to help Kubernetes operators optimize monitoring spend without compromising reliability or performance. 

  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit

Related

  • ← How Cloud-Native Platforms are Improving Global Supply Chain Resilience 
  • Implementing CI/CD for Cloud-Native Applications the Right Way →

Techstrong TV

Click full-screen to enable volume control
Watch latest episodes and shows

Tech Field Day Events

UPCOMING WEBINARS

  • CloudNativeNow.com
  • Error
  • SecurityBoulevard.com
Secure AI Everywhere: From Edge to Container
18 December 2025
Secure AI Everywhere: From Edge to Container

RSS Error: A feed could not be found at `https://devops.com/webinars/feed/`; the status code is `403` and content-type is `text/html; charset=UTF-8`

Safeguarding Data & Compliance on Next-Gen iOS Devices
16 December 2025
Safeguarding Data & Compliance on Next-Gen iOS Devices
Thoropass
11 December 2025
Thoropass
The Next Evolution of Application Security: AI-Accelerated DevSecOps
9 December 2025
The Next Evolution of Application Security: AI-Accelerated DevSecOps

Podcast


Listen to all of our podcasts

Press Releases

ThreatHunter.ai Halts Hundreds of Attacks in the past 48 hours: Combating Ransomware and Nation-State Cyber Threats Head-On

ThreatHunter.ai Halts Hundreds of Attacks in the past 48 hours: Combating Ransomware and Nation-State Cyber Threats Head-On

Deloitte Partners with Memcyco to Combat ATO and Other Online Attacks with Real-Time Digital Impersonation Protection Solutions

Deloitte Partners with Memcyco to Combat ATO and Other Online Attacks with Real-Time Digital Impersonation Protection Solutions

SUBSCRIBE TO CNN NEWSLETTER

MOST READ

Komodor Extends Autonomous AI Agent for Optimizing Kubernetes Clusters

November 5, 2025

Open Source KServe AI Inference Platform Becomes CNCF Project

November 13, 2025

pgEdge Adds Ability to Distribute Postgres Across Multiple Kubernetes Clusters

November 5, 2025

Causely Adds MCP Server to Causal AI Platform for Troubleshooting Kubernetes Environments

November 6, 2025

CNCF Adds Program to Standardize AI Workloads on Kubernetes Clusters

November 11, 2025

RECENT POSTS

Implementing CI/CD for Cloud-Native Applications the Right Way
Cloud-Native Architecture Contributed Content Kubernetes Social - Facebook Social - LinkedIn Social - X Topics 

Implementing CI/CD for Cloud-Native Applications the Right Way

December 3, 2025 Khushi Jitani 0
Cost-Aware Observability on K8s: Balancing Scrape Intervals, Retention and Cardinality
Contributed Content Kubernetes Social - Facebook Social - LinkedIn Social - X Topics 

Cost-Aware Observability on K8s: Balancing Scrape Intervals, Retention and Cardinality

December 3, 2025 Carol Byrne 0
How Cloud-Native Platforms are Improving Global Supply Chain Resilience 
Cloud-Native Development Contributed Content Social - Facebook Social - LinkedIn Social - X Topics 

How Cloud-Native Platforms are Improving Global Supply Chain Resilience 

December 3, 2025 Carl Torrence 0
Measuring AI-Driven Automation: The Metrics That Prove Whether Your Platform is Actually Getting Smarter 
Cloud-Native Development Contributed Content Social - Facebook Social - LinkedIn Social - X Topics 

Measuring AI-Driven Automation: The Metrics That Prove Whether Your Platform is Actually Getting Smarter 

December 3, 2025 Ankush Dhar 0
Akamai Acquires Fermyon to Further Advance Wasm Adoption
Features Social - Facebook Social - LinkedIn Social - X 

Akamai Acquires Fermyon to Further Advance Wasm Adoption

December 2, 2025 Mike Vizard 0
  • About
  • Media Kit
  • Sponsor Info
  • Write for Cloud Native Now
  • Copyright
  • TOS
  • Privacy Policy
Powered by Techstrong Group
Copyright © 2025 Techstrong Group, Inc. All rights reserved.
×

Step 1 of 6

16%
Which best describes your level of influence when it comes to cloud database purchase and/or maintenance in your organization?(Required)
Which best describes how you feel about the performance of the cloud database(s) that support your organization’s critical applications?(Required)
Which of the following describes the costs typically associated with your most important cloud database(s)?(Required)
Which factors have typically driven up your database costs?(Required)
What has or have typically been the greatest limiting factor(s) to improving cloud database performance at your organization?(Required)
Which of the following has prompted, or would be likely to prompt, your organization to switch to/from cloud databases?(Required)

×